

John Deere Engine type 6068HFU20
Meccalte Alternator type ECO38-2S4A
Performance class G2

GENERAL CHARACTERISTICS Frequency (Hz) 50 Reference voltage (V) 400/230 Max power ESP (kVA) 220 Max power ESP (kWe) 176 Max power PRP (kVA) 200 Max power PRP (kWe) 160 318 Intensity (A) Standard Control Panel **DSE 4510** Optional control panel **DSE 6610**

DESCRIPTIVE

- Mechanical governor
- Mechanically welded chassis with antivibration suspension
- Main line circuit breaker
- Radiator for wiring temperature of 48/50°C max with mechanical fan
- Protective grille for fan and rotating parts
- 9 dB(A) silencer supplied separately
- Charger DC starting battery with electrolyte
- → 12 V charge alternator and starter
- Delivered with oil and coolant -30°C
- Manual for use and installation

POWER DEFINITION

PRP: Prime Power is available for an unlimited number of annual operating hours in variable load applications, in accordance with ISO 8528-1.

ESP: The standby power rating is applicable for supplying emergency power in variable load applications in accordance with ISO 8528-1.

Overload is not allowed

TERMS OF USE

According to the standard, the nominal power assigned by the genset is given for 25°C Air Intlet Temperature, of a barometric pressure of 100 kPA (100 m A.S.L), and 30 % relative humidity. For particular conditions in your installation, refer to the derating table.

ASSOCIATED UNCERTAINLY

For the generating sets used indoor, where the acoustic pressure levels depends on the installation conditions, it is not possible to specify the ambient noise level in the exploitation and maintenance instructions. You will also find in our exploitation and maintenance instructions a warning concerning the air noise dangers and the need to implement appropriated preventive measures.

DIMENSIONS COMPACT VERSION

Length (mm)	3000
Width (mm)	1220
Height (mm)	1557
Dry weight (kg)	1715
Tank capacity (L)	340

GENERAL CHARACTERISTICS

Voltage	ESP		PRP		Standby Amps
	kWe	kVA	kWe	kVA	Otanaby Amps
415/240	176	220	160	200	306
400/230	176	220	160	200	318
380/220	176	220	160	200	334

ENGINE SPECIFICATIONS

GENERAL ENGINE DATAS		EXHAUST	
Engine model	JOHN DEERE 6068HFU20 , 4- temps, Turbo , Air/Air DC 6 X	Exhaust gas temperature (°C) Exhaust gas flow (L/s)	519 587
Cylinder arrangement	L	Max. exhaust back pressure (mm EC)	750
Displacement (C.I.)	6.72	FUEL	
Bore (mm) x Stroke (mm)	106 x 127		
Compression ratio	17:1	Consumption @ 110% load (L/h)	49.3
Speed (RPM)	1500	Consumption @ 100% load (L/h)	44.6
Pistons speed (m/s)	6.35	Consumption @ 75% load (L/h)	35.10
Maximum stand-by power at rated	202	Consumption @ 50% load (L/h)	23.10
RPM (kW) Frequency regulation (%)	+/- 0.5%	Maximum fuel pump flow (L/h)	140
BMEP (bar)	21.60		
	100	OIL	
Governor type	Mechanical A	Oil capacity (L)	33
		Min. oil pressure (bar)	1
COOLING SYSTEM		Max. oil pressure (bar)	4
Radiator & Engine capacity (L)	30	Oil consumption 100% load (L/h)	.02
Max water temperature (°C)	105	Carter oil capacity (L)	32
Outlet water temperature (°C)	93		
Fan power (kW)	7	HEAT BALANCE	
Fan air flow w/o restriction (m3/s)	7.82	Heat rejection to exhaust (kW)	N/A
Available restriction on air flow (mm EC)	15	Radiated heat to ambiant (kW)	20.2
Type of coolant	Cool Gard	Haet rejection to coolant (kW)	80+41
Thermostat (°C)	82-94	Hact rejection to coolant (kw)	00741
		AIR INTAKE	
EMISSIONS		AIR INTAKE	625
Emission PM (g/kW.h)	0	Max. intake restriction (mm EC) Intake air flow (L/s)	625 197
Emission CO (g/kW.h)	0		
Emission HCNOx (g/kWh)	0		
Emission HC (g/kW.h)	0		

ALTERNATOR SPECIFICATIONS

GENERAL DATAS		OTHER DATAS	
Alternator brand	Mecc Alte	Continuous Nominal Rating 40°C (kVA)	200
Alternator type	ECO38-2S4A	Standby Rating 27°C (kVA)	220
Number of phase	3	Efficiencies 4/4 load (%)	92.7
Power factor (Cos Phi)	0.8	Air flow (m3/s)	0.53
Altitude (m)	0 to 1000	Short circuit ratio (Kcc)	0.46
Overspeed (rpm)	2250	Direct axis synchro reactance unsaturated (Xd) (%)	207
Number of pole	4	Quadra axis synchro reactance unsaturated (Xq) (%)	113.8
Excitation system	SHUNT	Open circuit time constant (T'do) (sec)	.90
Insulation class / T° class, continuous	H/H/125°K	Direct axis transcient reactance saturated (X'd) (%)	9.45
40°C Regulation	DSR OF THE STATE O	Short circuit transcient time constant (T'd) (sec)	0.078
Wave Distors (THD Full Load) LL	<2.7	Direct axis subtranscient reactance saturated (X"d) (%	6.11
Wave Distors (THD Nol Load) LL	<2.5	Subtranscient time constant (T"d) (sec)	0.012
Number of bearing	1	Quadra axis subtranscient reactance saturated (X"q) (%)	22.2
Coupling	Direct	Zero sequence reactance unsaturated (Xo) (%)	2.59
Voltage regulation at established rating	+/- 0.5% A	Negative sequence reactance saturated (X2) (%)	14.8
(%)		Armature time constant (Ta) (sec)	0.016
		No load excitation current (io) (A)	0.7
		Full load excitation current (ic) (A)	3
		Recovery time (Delta U = 20% transcient) (ms)	500 ms
00		Heat rejection (W)	12600
			10.
			0
	9		

CONTROL PANEL

DSE Deep Sea Electronics 4610 Standard

DSE Deep Sea Electronics 6010 optional

The DSE 4610 MRS is a versatile unit which can be operated in manual or automatic mode. It offers the following features:

Measurements:

phase-to-neutral and phase-to-phase voltages, (In option: active power currents, effective power,

factor, oil pressure and coolant temperature levels) Supervision:

Modbus RTU communication on RS485

Reports:

(In option: 2 configurable reports)

Safety features:

Over speed, oil pressure, coolant temperatures, minimum and maximum voltage, minimum and

maximum frequency

(Maximum active power P<66kVA)

Traceability:

Stack of 50 stored events

For further information, please refer to the data sheet for the DSE 4610.

The DSE 6010 MRS is a versatile control unit which allows

operation in manual or automatic mode Measurements:

voltage and current, kW/kWh/kVA power meters Standard specifications: Voltmeter, Frequency meter.

Optional: Battery ammeter.

J1939 CAN ECU engine control

Alarms and faults: Oil pressure, Coolant temperature, Over speed, Start-up failure, alternator min/max,

Emergency

Stop button.

Engine parameters: hour counter, battery

Voltage.

Optional (standard at 12V): Oil pressure, water

temperature. Event log/ Management of the last 50 gen set events.

Mains and gen set protection

Clock management

USB connections, USB Host and PC, Communications: RS485 INTERFACE

Mod BUS protocol /SNMP

Optional: Ethernet, GPRS, remote control, 3G, 4G,

Web supervisor, SMS, E-mails